
Exam-like Questions

1. Implement a binary semaphore using the atomic exchange instruction (XCHG).

Give the code for both P(mutex) and V(mutex).

2. Assume that upon a ‘csignal’ c action, a process on ‘c.queue’ (i.e., the monitor

queue that holds processes blocked on condition c could simply be transferred to

the urgent queue. Alternatively, a monitor suspends the current process (i.e., adds

it to the urgent queue), and resumes a process waiting in c.queue. Refer to the

monitor below:

monitor
 int s = 1;
 condition c;
 procedure p(s)
 {
 if (--s < 0)
 c.wait;
 }
 procedure v(s)
 {
 s++;
 c.signal;
 }
 end

If the two lines of procedure v and p were accidentally switched in the

implementation, mark one answer in the next two items that best describes what

would happen.

a) Assuming the 2nd option: upon a ‘csignal’ c action, a process on ‘c.queu’ is

simply transferred to the urgent queue:

(a) This new code could cause a deadlock

(b) This new code would perform the same tasks as the old code

(c) This new code would cause starvation

(d) This new code would cause a violation of critical section mutual exclusion

requirements

(e) None of the above

b) Assuming the 1st option: upon a ‘csignal(c)’ action, a monitor suspends the

current process (i.e., adds it to the urgent queue), and resumes a process waiting

in ``c.queue”:

(a) This new code could cause a deadlock

(b) This new code would perform the same tasks as the old code

(c) This new code would cause starvation

(d) This new code would cause a violation of critical section mutual exclusion

requirements

(e) None of the above

3. Scheduling During its lifetime a process alternates between CPU bursts and

I/O bursts. During the CPU bursts the process executes on the CPU without

performing I/O operations. During the I/O bursts the process waits for I/O

completions without using the CPU. We propose the following scheduling policy.

The scheduler maintains an (effectively) infinite number of queues, Q[0], Q[1],

..., Q[infinity]. We assume that Q[k] has an associated quantum of 2k

milliseconds. When a job requests the CPU, it is placed on queue Q[0]. Whenever

the CPU becomes free, a job is dequeued from the lowest non-empty queue and

run for that queue's quantum. If the job finishes its CPU burst before the quantum

expires, (i.e., voluntarily releasing the CPU, then it is placed back on queue Q[0]

when it requests the CPU again, at the start of its next CPU burst. Otherwise, the

CPU is preempted, and the job is reenqueued on the next higher queue. Each such

context switch (preempting the CPU and reenqueuing the job) takes one

millisecond.

i) Is this algorithm subject to starvation? If not, explain why, and if so, suggest

a fix.

ii) Define the convoy effect as a long CPU burst that causes jobs with a short

CPU burst to queue up for a long time. Does this scheduling algorithm cause

the so-called convoy effect? If not, explain why, and if so, suggest a fix.

iii) Give a simple closed-form expression, either exact or approximate, for the

time spent in context switches by a process that executes k CPU bursts of n

milliseconds, each followed by an I/O burst of m milliseconds (i.e., total k

CPU bursts and k IO bursts, interweaved).

4. Answer each question in about a sentence or two. You will be penalized for

overly long answers.

i) We have discussed a number of techniques for enforcing mutual exclusion,

on top of which we have built more sophisticated synchronization primitives

(such as semaphores). List two techniques that can work for more than two

concurrent processes (hardware or software solutions).

ii) List two mutual exclusion techniques that will work in a multiprocessor

environment.

5. Answer the following questions:

i) List the 4 conditions for deadlocks.

ii) For the following set of processes:

Process 1 Process 2 Process 1

P(mutex1) P(mutex1) P(mutex2)

P(mutex2) P(mutex2) P(mutex1)

V(mutex1) V(mutex2) V(mutex1)

V(mutex2) V(mutex1) V(mutex2)

a) Draw the Resource Allocation Graph for a situation when there is a

deadlock. List what processes are in this deadlock.

b) If only processes P1 and P2 existed, would there be a deadlock? Why

or why not? Describe the technique used in this set of processes.

6. You have been hired to simulate one of the CU fraternities. Your job is to write

a computer program to pair up men and women as they enter a Friday night mixer.

Each man and each woman will be represented by one thread. When the man or

woman enters the mixer, its thread will call one of two procedures, man or

woman, depending on the thread gender. Each procedure takes a single

parameter, name, which is just an integer name for the thread. The procedure

must wait until there is an available thread of the opposite gender, and must then

exchange names with this thread. Each procedure must return the integer name

of the thread it paired up with. Men and women may enter the fraternity in any

order, and many threads may call the man and woman procedures simultaneously.

It doesn't matter which man is paired up with which woman (CU frats aren't very

choosy in this exercise), as long as each pair contains one man and one woman

and each gets the other's name. Use semaphores and shared variables to

implement the two procedures. Be sure to give initial values for the semaphores

and indicate which variables are shared between the threads. There must not be

any busy waiting in your solution.

